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Abstract 
With digitization of production technology changes in technology infrastructure will become more 
frequent and more important for the competitiveness of organizations. Here, a crucial factor lies in 
the acceptance of such novel technology by users. Technology acceptance models aim to predict 
the adoption of new technology in an organization. They are however static in nature and fail to 
capture to dynamic process of adoption. To overcome this limitation, we utilize quantitative data 
from a small organization to understand both acceptance patterns and social structure of the 
organization. Both are used in an agent-based simulation to predict acceptance integrating social 
effects of diffusion over time. Our simulation achieves very similar results as the quantitative real-
world data. 
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1 INTRODUCTION 
The integration of digitization in production 
technology has many different names: Industry 4.0, 
Internet of Things, Internet of Production. The 
common ground of these terms is the understanding 
that a key resource in production and manufacturing 
lies in the understanding of data that is generated in 
production processes. Utilization of such data in the 
form of data science, smart agents, decision support 
systems, smart logistics and AI-based automation 
promises the optimization of production processes 
by integrating various uncertainties. However, still 
many companies, especially SME are unprepared 
for total digitization. Both technological and social 
resources are missing to cope with the disruptive 
changes of the coming years. In today’s rapidly 
changing technological environments, adapting to 
new technologies quickly is a crucial organizational 
skill both from a technological infrastructure 
perspective and from a human resources 
perspective. While the first is often addressed in 
research, the latter is far less understood.  
Here, human resources required for total digitization 
in production refers to staff that has adequate 
attitudes, skills, etiquette, culture, and acceptance. 
Workers and engineers must approve of digitization 
strategies. They must have the technological 
capacities to implement or communicate necessary 
changes.  Further, they must have a holistic 
understanding of the accompanying different work 
practices that are connected to digital processes 
(e.g., digital communication etiquette, sharing 
culture, privacy culture, etc.). Lastly, changes in 
working infrastructure and thus work processes 

must find acceptance in both workers and 
engineers. Without social acceptance of these novel 
technologies, introduction of said technologies will 
be silently sabotaged undermining objective 
performance measurement. The evaluation through 
KPIs ultimately yields only numbers masked by 
social practices and acceptance. 
In this article we investigate social acceptance by 
trying to simulate the introduction process of novel 
software using an agent-based model. Based on 
one of the most popular and recent technology 
acceptance models the Unified theory of acceptance 
of technology (UTAUT) we measured psycho-social 
predictors of acceptance in a real working group. 
We then measured acceptance of a digital 
communication tool (i.e. Slack). Based on 
sociometric data of the working group (n = 20) we 
modelled social influence using a graph-based 
representation—the underlying social network. We 
then simulated the decision-making process in an 
agent-based model utilizing the previously 
established psycho-social predictors and underlying 
social-network structure. Lastly, we compared the 
individual simulated acceptance with the real-world 
measured acceptance and found very low deviance 
and similar acceptance patterns. 
 
2 SIMULATING TECHNOLOGY ADOPTION  
In order to understand the technology adoption 
process and establish a simulation model we first 
have to look at existing technology acceptance 
models. We then look identify various methods to 
establish the underlying social-network structure 



 
 

  
from different data source. Lastly, we need to 
establish a simulation approach that allows 
incorporating both inter-individual differences and 
social network information. 

2.1 Technology acceptance models 
Research on technology acceptance has had a long 
history in social psychology and the decision 
sciences. The earliest roots can be traced back to 
theories of understanding voter behavior in the 
1960s in the theory of reasoned action [1]. The 
underlying assumption of this model is that both 
attitudes and norms play a role in accepting a social 
practice, a political candidate or a novel technology. 
Later models incorporate effects of behavioral 
control (e.g., theory of planned behavior [2]). More 
modern models specifically focus on the adoption of 
information systems and even formalize the 
diffusion of an innovation in society (theory of the 
diffusion of innovations [3]).  
Nevertheless, these models formulate social 
processes by establishing user typologies and their 
characteristics. If the set of “early adopters” is 
convinced to use a product, the next phase in 
diffusion (majority adoption) is started and so on. 
This perfectly addresses large-scale social 
acceptance questions but misses to predict 
individual acceptance in individual organizations. 
Here the different revisions of the technology 
acceptance model (TAM [4]) triumph. By modelling 
individual psychosocial antecedents of social 
acceptance these models predict the behavioral 
intention of a user. They predict the answer to the 
question: Do I intend to use the software?  

 

Figure 1 -  UTAUT model visualization adapted 
from [5] 

The most recent form of the model, the UTAUT [5] 
model (see Fehler! Verweisquelle konnte nicht 
gefunden werden.), predicts the behavioral 
intention from four factors: performance expectancy, 
effort expectancy, social influence, and facilitating 
conditions. Performance expectancy refers to the 
users evaluation of whether they believe that the 
system will improve their work performance—will it 
improve my work? Effort expectancy refers to the 

users belief about the required effort to work with 
the system—is it easy to use? Social influence 
refers to the perceived acceptance of the system by 
other people that are important (e.g., bosses, 
colleagues). It addresses the question: Will I be the 
only one using it? Facilitating conditions refers to the 
infrastructural support of the system—will I get help 
when I run into trouble?  
These four factors determine the behavioral 
intention. Some of them are moderated by additional 
inter-individual differences (age, gender, 
experience, voluntariness). The UTAUT model is 
applied by measuring the antecedents of behavioral 
intention and then estimating the individual 
acceptance. This is achieved by using a hierarchical 
model of linear regressions (structural equation 
model). The coefficients of which have been 
established from extensive research in technology 
acceptance.  
The drawback of this model is that the social 
influence for each individual is measured only once 
during the assessment. However, adoption is a 
dynamic process characterized by diffusion. Thus, 
social influence changes over time, when important 
persons in an organized change their individual 
acceptance over time (e.g., after training courses). 
This dynamic is insufficiently modelled in static 
acceptance models. 

2.2 Measuring social network structures 
In order to improve on the static nature of 
acceptance models, one core source of dynamics, 
the social infrastructure, can be modelled, 
integrated, and used in simulation models. Such 
simulation approaches should be able to predict 
shifts and changes in social acceptance in the social 
structure of an organization. But, how do we 
measure and access such structures. The science 
of sociometry is the study of relationships in groups 
by mapping individual perspectives of relationships 
onto self- and other-centric maps of social structure. 
Initially designed to understand dynamics in school 
classes, the method can has been extended to 
various other group dynamic processes [6]. The 
downside of sociometry is the extensive research 
effort required to measure adequate social 
structures. Often social relationships are 
asymmetrical—I like you, but you don’t like me. 
Other relationships are unknown to the public. This 
requires extensive anonymization procedures to 
ensure trust towards the research procedure and 
the experimenters. 
A different approach is to utilize proxy relationships 
to determine an image of the real social structure. 
Such proxy relationships can be collaborations in 
work projects, office co-occupation, attendance in 
meetings, etc. The proxy that we use in our 
research is the co-authorship on publications 
available to the public [7]. The benefit lies in the 
public availability of the data. The data does not 
necessarily capture to sole affective structure of the 



 
 

  
underlying social network—who likes whom. What it 
does, is capture a conjoint measurement of social 
coherence, organizational role, and organizational 
authority. All of which are factors typically relevant 
for social influence in the UTAUT model. From such 
data we can derive the structure of the underlying 
social network and even quantify the intensity of 
relationships from repeated co-authorships. 
Whether such data has sufficient quality for 
simulation modeling, is part of the research question 
in this article. 

2.3 Agent-Based Modelling 
Assessing both antecedents of acceptance and the 
underlying social network gets us only so far. 
Individual decision-making on acceptance and on 
observing the decisions made by colleagues are 
hard to formalize in closed-form representations or 
formulas. Technically, each individual conducts a 
set of matrix multiplications to derive the individual 
behavioral intention. However, these calculations 
have to be conducted iteratively multiple times until 
the state stabilizes. As soon as each individual 
incorporates a mental model of the opinion of others 
or starts learning, closed-form representations break 
down [8].  
For such cases, agent-based models have been 
proven both successful in replicating real-world data 
and successful in communicating results to 
laymen [9]. The central idea of agent-based 
modeling lies in programmatically modeling the 
individual as a template or agent and letting the 
independent agents make their own decisions 
based on their perception of the environment. In our 
case agents each have individual perceptions of 

performance, effort and the facilitating conditions. 
The perception of social influence is generated from 
the environment—in our case the other agents and 
the underlying social network. From these 
perceptions they derive their own behavioral 
intention, possibly influencing the neighbors in the 
social network in the next iteration of the run. By 
analyzing the outcome of several of such 
simulations, probability of organizational acceptance 
can be derived.  
Agent-based models are often designed in 
specialized software toolkits (e.g., Netlogo [10]). 
These toolkits simplify formulation of agent behavior 
and include interfaces for visualizing simulation 
states, interacting with simulation parameters, and 
exporting simulation results. As additional tools, they 
provide the means to run simulations in batches and 
to search for optimal parameter configurations using 
different optimization strategies such as genetic 
algorithms. 
 
3 METHOD 
In order to study the effectiveness of agent-based 
models for acceptance research, we first conducted 
a survey containing all UTAUT measurement 
variables in a scientific working group (n = 20). 
These measurements were directed at the use of 
the software “slack”1. The items of the UTAUT scale 
can be found in the original work by Venkatesh et 
al. (cite). All measurements were taken on a six-
point Likert scale. From each individual response we 
derived an agent for our agent-based model (see 
Figure 2). The agent-based model was generated in 
Netlogo 6.0.1—an easy to use simulation 

                                                
1 https://slack.com/ - Slack is a social collaboration software suite. 

Figure 2 - Netlogo model used in this article. The left-hand side shows the coefficients used in the model, 
including a normalization. The center shows a graphical representation of the model. The right shows model 

evaluation parameters for an individual run. 



 
 

  
software [10]. 
The survey was not anonymized to enable 
connecting the data with a social network structure. 
The social network structure was derived from the 
central publishing repository of the group, creating a 
connection between all agents, that were co-authors 
on any publication. Repeated co-authorship was not 
evaluated. All authors not present in the survey data 
were removed from the agent-based model. The 
target variable (i.e., behavioral intention) was 
modelled as the weighted sum of the variable’s 
performance expectancy, effort expectancy, 
facilitating conditions, and social influence. While 
the first three were established from survey data, 
the social inclusion variable was determined as the 
averaged behavioral intention of all connected 
users. The behavioral intention of all agents was 
initialized as 3.5 which signifies a neutral stance. 
 
As free parameters for the experiments the 
coefficients of the aforementioned weighted sum 
were selected. To ensure that the outcome variable 
stays within the original measurement range, all 
coefficients were normalized to add up to one. 
Coefficients can be chosen on a scale of 0 to 1 in 
0.1 steps. As an additional free parameter, we let 
facilitating conditions be any integer on the scale of 
1 to 6 to simulate different support conditions.  
Using the behavior space simulation tool, we 
generated 161,051 parameter constellations with a 
ten-fold validation. This number is the number of 
unique normalized free form parameters from a total 
of 600,000 possible simulations. The random seed 
was uninitialized to allow for the influence of 
randomness in the model. 

In each simulation run we measure the divergence 
of the simulated model from the real-world 
behavioral intention as measured in our survey. We 
do this for each individual agent and keep track of 
the mean model divergence and the standard 
deviation of the model divergence. For visual 
inspection, we implemented two visualizations, one 
to show the simulated behavioral intention, another 
to show the model divergence.  
 
4 RESULTS 
In order to see how the simulation results fare 
against the survey methodology we first look at the 
results of the survey and then compare the findings 
with the simulation results. 

4.1 Survey Results 
The survey of 20 participants, yielded 14 female and 
6 male participants. The average age of participants 
was 32.7 years (SD = 7.6). The participants 
reported a high behavioral intention to use the 
software (M = 5.17, SD = 0.98). The software was 
seen as rather easy to use (M = 5.67, SD = 0.33) 
and was considered to be rather neutral with regard 
to increasing work performance (M = 3.91, 
SD = 0.67). The participants rated the social 
influence rather positively (M = 4.38, SD = 0.85) and 
found that the software was well supported 
(M = 5.35, SD = 0.52). 

4.2 Simulation Results 
Total simulation runtime was approximately 20 
minutes. Each simulation reached the steady state 
in about 7 iterations. The output of the simulation 
extended to about 400Mb of comma separated 
values of free parameters and all tracked model 
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parameters.  
We use the software R to analyze the resulting data. 
Using multiple linear regression analyses, we find 
that from our simulation, effort expectancy and 
social influence are the most determining factors for 
this particular working group (F(4, 161,046) = 1651, 
p < .001, adj. r2 = .29, see Table 1).  
Table 1 – Multiple linear regression result table from 

simulation results 

Coefficient Estimate SE t-value p 

(intercept) 3.47 0.19 18.63 <.001 

PE 0.30 0.19 1.6 .11 
FC -0.25 0.19 -1.347 .18 

EE 2.64 0.19 14.12 <.001 

SI 0.91 0.19 4.86 <.001 
PE=Performance Expectancy, FC=Facilitating Conditions, 
EE=Effort expectancy, SI=Social Influence 

When we look at the attained behavioral intention 
from all simulation runs, we see that the achieved 
behavioral intention is on average slightly lower than 
the true sample mean, which was measured by the 
survey (see Figure 3). This means that independent 
of the coefficients of the model behavioral intention 
is strongly determined by the perceived low effort 
expectancy in this group. The mean model 
divergence was -0.79 (SD = 0.73).  
When we limit the free parameters of the model to 
the established parameters from literature (±0.1), we 
get a better fit of results (see Figure 4). Mean model 
divergence from the data now only yields M = -0.37 
(SD = 0.28). This indicates that the parameters 
established by Venkatesh et al. [5] in conjunction 
with our agent-based simulation help predict 
acceptance of novel software solutions. 
 

 
Figure 4 – Resulting simulations when the model 

coefficients are used from data 

 

5 DISCUSSION AND LIMITATIONS 
In this paper, we have simulated human decision 
making on the basis of the relatively simple UTAUT 
model. We surveyed twenty employees of a 
research group and modelled their virtual twins 
based on their survey results. We further used 
public co-authorship information to infer the 
underlying social network structure in the work 
group. The simulation of the acceptance of a 
collaboration software suite yielded similar results 
as the quantitative assessment of acceptance.  
These results indicate that the agent-based model 
was able to generate a similar prediction as the 
structural equation-based approach. What was most 
interesting was that when looking at the individual 
network visualizations one could see that the users 
who reported the lowest behavioral intention still 
showed the lowest behavioral intention. The 
idiosyncrasies of the network were retained. Our 
approach was computationally not very challenging 
as the network was rather small in size.  
The real-world data that we collected was a static 
snapshot of a long adoption process of two years. 
Since we did not collect this information regularly 
across time, we are unable to verify whether the 
adoption diffusion progressed similarly in the model 
as in the real world. Future research could try to 
validate longitudinal data—inherently available in 
the simulation—from simulation and the real-world.  
The standard deviation of model divergence in some 
simulation runs was still rather large (between 0.9 
and 1.1). It would be interesting to see, who is 
responsible for these deviations. Are individual 
users badly simulated or do some parameter 
constellations lead to overall bad results. Here, 
more detailed analyses would help in understanding 
where this simulation error can be attributed to.  
So far, our model does not include a mental model 
for the individual agents. Thus, the agents are 
unaware of trends, or do not change their social 
network structure. Future research could investigate 
whether a model of trustworthy colleagues, whose 
social influence would then matter more, is able to 
predict adoption even better.  
Our approach can, in theory, also be used to predict 
acceptance of novel technology in large 
organizations, given that a proxy for the social 
structure is available. Future research will have to 
validate the simulation in larger organizational 
settings.  
 
6 CONCLUSION 
Overall, we were able to simulate the diffusion 
process of acceptance in a small organization. The 
final outcome was relatively close to the observed 
real-world data. Our simulation was able to integrate 
dynamic behavior into a static model of technology 
acceptance. Applying such models can be useful in 
determining neuralgic users that are well connected 
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and could drastically shift long-term adoption one 
way or the other. Understanding their motivation, will 
help in designing a support structure to persuade 
these key-users and gatekeepers, allowing 
organizations to adapt to the required changes of 
digitization more rapidly. 
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